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Abstract
We study the statistical mechanics of learning from examples between the
two-layered committee machines with different numbers of hidden units using
the replica theory. The number M of hidden units of the student network is
larger than the number MT of those of the target network called the teacher.
We choose the networks to have binary synaptic weights, ±1, which makes
it possible to compare the calculation with the Monte Carlo simulation. We
propose an effective teacher as a virtual target network which has the same
M hidden units as the student and gives identical outputs with those of the
original teacher. This is a way of making a conjecture for a ground state of
a thermodynamic system, given by the weights of the effective teacher in our
study. We suppose that the weights on MT hidden units of the effective teacher
are the same as those of the original teacher while those on M −MT redundant
hidden units are composed of anti-pairs, {1,−1}, with probability 1 − p in
the limit p → 0. For p = 0 exact, there are no terms related to the effective
teacher in the calculation, for the contributions of anti-pairs to outputs are
exactly cancelled. In the limit p → 0, however, we find that the learnt weights
of the student are actually equivalent to those of the suggested effective teacher,
which is not possible from the calculation for p = 0. p plays the role of a
symmetry breaking parameter for anti-pairing ordering, which is analogous to
the magnetic field for the Ising model. A first-order phase transition is found
to be signalled by breaking of symmetry in permuting hidden units. Above a
critical number of examples, the student is shown to learn perfectly the effective
teacher. Anti-pairing can be measured by a set of order parameters; zero in
the permutation-symmetric phase and nonzero in the permutation symmetry
breaking phase. Results from the Monte Carlo simulation are shown to be in
good agreement with those from the replica calculation.
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1. Introduction

The learning of a feed-forward neural network from examples given by a set of input–output
rules is considered as a typical model for the supervised learning used in many applications.
Statistical mechanics has been proven useful for the study of this subject. The replica theory
[1, 2] has been used in theoretical studies in order to perform the average over quenched
disorder. The statistical mechanical approach to the learning from examples was developed
[3, 4] by utilizing Gardner’s theory of the storage capacity [5–8], which is defined as the
maximum number of patterns that can be stored in a neural network. Early studies were done
for a simple perceptron with a single layer. Interesting results were found such as gradual or
sudden learning depending on continuous or discrete weights and the enhancement of learning
via phase transition. In some cases, the spin-glass nature was observed with replica symmetry
breaking [3, 4, 9, 10].

There has been remarkable progress in studies for more realistic two-layer neural
networks, in particular the parity and the committee machine. The connectivity between
input units and hidden units is categorized into the tree structure where each hidden unit is
connected to a part of input units without overlapping and the fully-connected structure where
each hidden unit is connected to all input units.

In studies of the storage capacity, replica symmetry was found to break when the number
of patterns is close to the storage capacity. The parity machine with the tree structure was
studied successfully within the one-step replica symmetry breaking scheme [11]. For the
committee machine, the earlier works were done only within the replica-symmetric scheme
[12, 13] and the breaking of permutation symmetry was found to be characteristic of fully-
connected machines. Later, the much-needed values of the storage capacity of the committee
machine for both the tree structure and the fully-connected structure were obtained within the
one-step replica symmetry breaking scheme [14]. Monasson and Zecchina developed a new
theory that needs no replica symmetry breaking scheme [15]. Using this new approach, an
equivalent result was found for the fully-connected committee machine [16, 17] and a new
result for the fully-connected parity machine [18].

The breaking of permutation symmetry was also found to play an important role in the
learning by the fully-connected committee machine. It was found that there is a first-order
phase transition from the poor to the good learning phase, which is signalled by permutation
symmetry breaking [19, 20]. Unlike the case of the storage capacity, the breaking of replica
symmetry is not found [21, 22]. This is probably because the weights of the given target
network serve for a recognizable attractor in the weight space.

In most previous studies of learning, the target network, called the teacher, and the student
network have the same architecture. In real applications, however, one does not know the
architecture of the teacher which is usually a human. We can reasonably assume that the two
networks have the same number of input units that is for example the number of pixels of
the screen in which the input image is captured. We can also assume that the two networks
have the same number of output units which determines the number of classes in patterns.
Consequently, a crucial difference may come from the hidden-layer structure. We consider the
fully-connected committee machines which have realistic two-layer structures and complexity,
due to the fully-connected structure, as can be handled by analytical calculation. We consider
the situation where the number M of hidden units of the student is larger than the number
MT of those of the target network. Previous work in this direction was done for the networks
having finite numbers of hidden units (M = 3,MT = 1) and binary weights [23], and also
for those having large numbers of hidden units with a scaling MT/M → 0 and continuous
weights with spherical constraint [24]. In this paper we will investigate the situation in which
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the networks have large numbers of hidden units with a finite ratio MT/M which seems more
realistic than the extreme scaling MT/M → 0. For the opposite case with M < MT the
learning mechanism is completely different, for which we will present our result in a separate
paper.

The student is to utilize all possible weights on its hidden units, not knowing the
architecture of the teacher. We therefore suppose that the student learns an effective teacher,
rather than the original teacher, which has the same M hidden units. The weights of the
effective teacher are supposed to correspond to a ground state. We consider the networks to
have binary weights which can be regarded as the Ising spins. Then we have an advantage to
accompany the Monte Carlo simulation. The calculation might depend on the conjecture of
the ground state. It is indeed quite valuable to use the simulation to confirm the reliability of
our findings from the conjecture.

We summarize the following sections. In section 2, the statistical mechanical formalism
via the replica theory is developed. The effective teacher having a partial anti-pairing of
redundant weights is introduced. In section 3 infinite degeneracy in ground states and the
resultant phase transition are discussed. In section 4, the permutation-symmetric state is
investigated. In section 5, the permutation symmetry breaking state is found and the resultant
first-order transition from the permutation-symmetric to permutation symmetry breaking phase
is discussed. Results from the Monte Carlo simulation are shown to be in a good agreement
with the theoretical expectation. In section 6, we summarize our study and comment about
our future work for the case with M < MT.

2. Statistical mechanical formalism

We consider the teacher network that is a fully-connected committee machine with one
hidden layer and one output unit. In the fully-connected structure, all the hidden units
are connected to every input unit. It has N input units and MT hidden units. By definition
of the committee machine, the weights connecting hidden units to output unit are set to
unity. The student network is also a fully-connected committee machine with the same
architecture, but has more M hidden units. Let W 0

ji and Wji be the weights of the teacher
and student respectively which connect an input unit i to a hidden unit j . We consider binary
weights having a value either 1 or −1. The teacher provides a training set consisting of P
examples. An example µ is given by an input–output rule:

{
ξ

µ

i ; i = 1, . . . , N
} → oµ.

Input variable ξ
µ

i on an input unit i is independently and randomly distributed with variance
unity, which may describe the brightness of an image at a pixel i of the screen. The output
of the teacher is then given by oµ = sgn

(
M

−1/2
T

∑MT
j sgn

(
N−1/2 ∑N

i W 0
jiξ

µ

i

))
. Given input

variables, the student produces its own output σµ = sgn
(
M−1/2 ∑M

j sgn
(
N−1/2 ∑N

i Wjiξ
µ

i

))
.

The error function is defined by 1/4
∑

µ(oµ − σµ)2. The learning algorithm is that the
student learns the teacher by adjusting its weights so as to minimize this error function.

The statistical mechanical approach can be applied by identifying the error function
as the energy E, and taking the thermodynamic limit N → ∞. Weights are treated as
thermodynamic variables. The temperature β−1 can be interpreted as a stochastic or noise
parameter inherent in the network or environment.

{
ξ

µ

i

}
and

{
W 0

ji

}
, which are fixed during

the learning process, can be interpreted as quenched disorder. We can then apply the replica
theory to find averaged properties over disorder. We consider the teacher to have uncorrelated
weights: N−1 ∑

i W
0
jiW

0
ki = δjk . The question may arise whether there exist M orthogonal

vectors Wj with N components having a value either +1 or −1 which meet this constraint.
The constraint is met for N = 2l for integer l, and also approximately so for N � M .
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We consider the latter case, which seems to apply to networks with many input units used in
real applications.

The student will try to adjust all possible weights on its M hidden units without knowing
the architecture of the teacher. We propose an effective teacher as a virtual target network
which has the same M hidden units as those of the student and produces identical outputs
with those of the original teacher. This is in fact a conjecture for a ground state of the
thermodynamic system on which the weights of the student will converge in the weight space
as learning makes progress. In solving the statistical mechanical problems, it is sometimes
very crucial to know a ground state and find a relevant order parameter. A good example is
the anti-ferromagnetic system. In this problem the relevant order parameter is the staggered
magnetization which is the thermal average of the overlap of spins with the staggered spins
of the ground state. In a similar way we will suppose the weights of the effective teacher
as a ground state and introduce various order parameters from overlaps between the weights
of the student and those of the effective teacher. There also appear different types of order
parameters due to introducing replicas.

Let us divide the hidden units of the effective teacher into three blocks: B1 for
1 � j � MT, B2 for MT + 1 � j � MT + L, and B3 for MT + L + 1 � j � M , where
L = (M − MT)/2. We choose the weights for the hidden units in B1 to be identical to those
of the original teacher. An anti-pair is composed of W 0

ki for k ∈ B2 and Wk+L,i for k + L ∈ B3

with the condition Wki = −Wk+L,i . If we choose the whole weights for redundant hidden
units in B2 to make anti-pairs with those for B3, the contributions of anti-pairs to outputs will
be cancelled, making the original and the effective teacher yield the same outputs. However,
there are no places involved with redundant weights of the effective teacher, since the energy
depends only on outputs. While this effective teacher is a candidate for a ground state, it is
not possible to examine from the calculation whether or not the student may indeed learn the
effective teacher.

To resolve this difficulty, we consider the effective teacher which has a partial anti-pairing
of redundant weights:

W 0
ki =

{−W 0
k+L,i for N(1 − p) input units

W 0
k+L,i for Np input units.

(1)

In this way, the effective teacher has a probability 1 − p of redundant weights being made
up of anti-pairs. Ultimately, we will take the limit p → 0. The supposed weights of the
effective teacher will be given explicitly in the calculation, but this does not mean that the
student has a priori information about the teacher. The student only learns through outputs
of which the effective teacher produces the same values as the original teacher in the limit
p → 0. This is a hypothetical scheme designed for the purpose of theoretical calculation.
The introduction of the effective teacher might seem costly, making the problem unnecessarily
complicated. In section 5, however, we will see that the calculation without introducing the
effective teacher, that is equivalent to the case for p = 0 exact, leads to an undesirable result,
while the calculation based on the effective teacher in the limit p → 0 gives rise to a consistent
result with what is found from the simulation. One of the order parameters describing anti-
pairing is the thermal average of the overlap r− = N−1 ∑

i W
0
kiWk+L,i . In the limit p → 0 we

will verify our anti-pairing learning scenario by finding r− → −1 in the learnt state, appearing
for sufficient examples, while r− = 0 in the unlearning state. For p = 0 exact, however, we
will find r− to be always zero, independent of the number of examples. In this sense p can
be regarded as a symmetry breaking parameter for anti-pairing ordering, which is analogous
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to the magnetic field for the Ising model. We are now to solve the statistical mechanical
problem by making a conjecture for a ground state with a symmetry breaking parameter and
constructing order parameters associated with it. In the computer simulation by the Monte
Carlo algorithm we will not use the effective teacher, but can check whether the learnt weights
of the student are equivalent to those of the effective teacher.

Using the replica theory, the free energy F can be found as

−βF = lim
n→0

∂

∂n
Zn = N(G0 + αGr), (2)

where we define α ≡ P/N as the number of examples per input unit and Z is the partition
function. The over-bar denotes the average over disorder:

{
ξ

µ

i

}
,
{
W 0

ji

}
. We take the limit

in which M,MT,M − MT go to ∞ with a finite ratio κ = MT/M , which makes analytic
calculation possible. Various order parameters can be written as matrices:

Qσ
jk =

〈
1

N

∑
i

Wσ
jiW

σ
ki

〉
,

C
σρ

jk =
〈

1

N

∑
i

Wσ
jiW

ρ

ki

〉
(σ �= ρ),

Rσ
jk =

〈
1

N

∑
i

Wσ
jiW

0
ki

〉
.

(3)

Here σ, ρ = 1, . . . , n are replica indices. The bracket denotes the thermal average. We use
the replica-symmetric ansatz that the order parameters above do not depend on specific replica
indices and specific pairs of replica indices. Dropping replica indices, we can then rewrite the
above order parameter matrices as Qjk, Cjk and Rjk , respectively.

The first two order parameter matrices in equation (3) are symmetric and the matrix
elements are written as

Qjk =




1 for j = k

Q for j, k ∈ B1 (j �= k)

w for j ∈ B2, k = j + L ∈ B3

Q1+ for j ∈ B1, k ∈ B2

Q1− for j ∈ B1, k ∈ B3

Q2+ for j, k ∈ B2 or B3 (j �= k)

Q2− for j ∈ B2, k ∈ B3 (k �= j + L)

(4)

Cjk =




q for j = k and j, k ∈ B1

q+ for j = k and j, k ∈ B2 or B3

q− for j ∈ B2, k = j + L ∈ B3

C for j, k ∈ B1 (j �= k)

C1+ for j ∈ B1, k ∈ B2

C1− for j ∈ B1, k ∈ B3

C2+ for j, k ∈ B2 or B3 (j �= k)

C2− for j ∈ B2, k ∈ B3 (k �= j + L).

(5)
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The elements of the asymmetric order parameter matrix Rjk are also written as

Rjk =




r for j = k and j, k ∈ B1

r+ for j = k and j, k ∈ B2 or B3

r− for j ∈ B2, k = j + L ∈ B3 or k ∈ B2, j = k + L

R for j, k ∈ B1 (j �= k)

R∗
1+ for j ∈ B1, k ∈ B2

R∗
1− for j ∈ B1, k ∈ B3

R1+ for j ∈ B2, k ∈ B1

R1− for j ∈ B3, k ∈ B1

R2+ for j, k ∈ B2 or B3 (j �= k)

R2− for j ∈ B2, k ∈ B3 or j ∈ B3, k ∈ B2 (k �= j + L).

(6)

Weights on different hidden units that connect the same input unit, for example Wji and
Wki , could be correlated because they share common input patterns, which is characteristic of
the fully-connected structure. In fact, this is true in the permutation-symmetric state, explained
later, which is stable for an insufficient number of examples less than a critical value. The order
parameters between different hidden units are written in uppercase in the above equations,
e.g., Q,C,R etc. They are found to be of O(M−1). However, they give a non-vanishing
contribution to the free energy via rescaling given by multiplying a number of O(M). We
rescale them in the following way:

Q̄ = (MT − 1)Q, Q̄1± = √
MTLQ1±, Q̄2± = (L − 1)Q2±,

C̄ = (MT − 1)C, C̄1± = √
MTLC1±, C̄2± = (L − 1)C2±,

R̄ = (MT − 1)R, R̄
(∗)
1± = √

MTLR
(∗)
1±, R̄2± = (L − 1)R2±.

(7)

Gr in equation (2) can be found from Zn = ∑
{Wσ

ji } enPGr where the disorder average

over input patterns ξ
µ

i is carried out, but the average over weights of the teacher is left.
We find

Gr(A1, A2, A3) = 2
∫ ∞

−∞
Dt H


 A3√

A2 − A2
3

t


 ln

(
e−β + (1 − e−β)H

(√
A2

A1 − A2
t

))
,

(8)

where

A1 = 2

π

1

M

∑
j,k

sin−1 Qjk

A2 = 2

π

1

M

∑
j,k

sin−1 Cjk

A3 = 2

π

1√
MMT

∑
j,k

sin−1 Rjk.

(9)

We use Dt = dt√
2π

e−t2/2 and H(t) = ∫ ∞
t

Dx. Using equations (4)–(7), we rewrite A1, A2,

A3 as
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A1 = 1 + (1 − κ)
2

π
sin−1 w +

2

π
{κQ̄ + (1 − κ)(Q̄2+ + Q̄2−) +

√
2κ(1 − κ)(Q̄1+ + Q̄1−)}

A2 = 2

π
{κ sin−1 q + (1 − κ)(sin−1 q+ + sin−1 q−)

+ κC̄ + (1 − κ)(C̄2+ + C̄2−) +
√

2κ(1 − κ)(Q̄1+ + Q̄1−)}

A3 = 2

π
(κγ )−

1
2

{
κ sin−1 r + (1 − κ)(sin−1 r+ + sin−1 r−)

+ κR̄ + (1 − κ)(R̄2+ + R̄2−) +

√
κ(1 − κ)

2
(R̄1+ + R̄1− + R̄∗

1+ + R̄∗
1−)

}
(10)

where we define γ ≡ 1 + (κ−1 − 1)(1 − (2/π) sin−1(1 − 2p)), going to 1 in the limit p → 0.
Before the order parameters are introduced above in Gr , we first encounter a multiple

integral for various variables. For example, as a part of the integral we have
∫

dQσ
jkδ

(
Qσ

jk −a
)

where a = N−1 ∑
i W

σ
jiW

σ
ki . From the integral representation of the delta function, this

leads to
∫

dQσ
jk

∫
dKσ

jk(N/2π) exp
[
iNKσ

jk

(
Qσ

jk −a
)]

. From the saddle-point approximation
for this integral in the limit N → ∞,Qσ

jk and −iKσ
jk take the saddle-point values, each

corresponding to an order parameter Qjk and its conjugate order parameter Q̂jk , respectively,
assuming that the saddle point is replica-symmetric. In this manner, we define the hatted
order parameters conjugate to the order parameters given in equations (4)–(6). The conjugate
order parameters do not have direct physical meanings, so we can redefine them for
convenience as

M−1
T (q̂ − Ĉ) → q̂, 2L−1(q̂± − Ĉ2±) → q̂±, M−1

T (r̂ − R̂) → r̂ ,

L−1(r̂± − 2R̂2±) → r̂±, L−1(ŵ − 2Q̂2− − 2q̂− + 2Ĉ2−) → ŵ,

Q̂ − Ĉ → Q̂, Q̂1± − Ĉ1± → Q̂1±, Q̂2± − Ĉ2± → Q̂2±.

(11)

Summing over
{
Wσ

ji

}
for the replicated partition function Zn, we get Zn = enN(G0+αGr ). Then

G0 can be found as

G0 = −1

2
Tr Q · Q̂ − 1

2
Tr C · Ĉ − Tr Rt · R̂ − L

2
wŵ +

1

2
q · q̂ − r · r̂ +

1

n
ln Zeff . (12)

The superscript ‘t’ denotes the transpose of the matrix. In this equation, we define the matrices:

Q =




1 + Q̄ Q̄1+ Q̄1−
Q̄1+ 1 + Q̄2+ w + Q̄2−
Q̄1− w + Q̄2− 1 + Q̄2+


 , Q̂ =




Q̂ Q̂1+ Q̂1−
Q̂1+ Q̂2+ Q̂2−
Q̂1− Q̂2− Q̂2+


 ,

C =




1 + Q̄ − q − C̄ Q̄1+ − C̄1+ Q̄1− − C̄1−
Q̄1+ − C̄1+ 1 + Q̄2+ − q+ − C̄2+ w + Q̄2− − q− − C̄2−
Q̄1− − C̄1− w + Q̄2− − q− − C̄2− 1 + Q̄2+ − q+ − C̄2+


 ,

Ĉ =




Ĉ Ĉ1+ Ĉ1−
Ĉ1+ Ĉ2+ Ĉ2−
Ĉ1− Ĉ2− Ĉ2+


 ,

R =




r + R̄ R̄∗
1+ R̄∗

1−
R̄1+ r+ + R̄2+ r− + R̄2−
R̄1− r− + R̄2− r+ + R̄2+


 , R̂ =




R̂ R̂∗
1+ R̂∗

1−
R̂1+ R̂2+ R̂2−
R̂1− R̂2− R̂2+


 .

(13)
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We also define the vectors:

q =




q − 1

q+ − 1

q− − w


 , q̂ =




MTq̂

Lq̂+

Lq̂−


 , r =




r

r+

r−


 , r̂ =




MTr̂

Lr̂+

Lr̂−


 . (14)

Zeff is the effective partition function per input unit for which the summation is carried out
over the weights branching from one input unit,

{
Wσ

j

}
, where the input index is dropped.

The over-bar on ln Zeff denotes the disorder average over the weights of the effective teacher,
which is the remaining disorder. Note that, in finding Gr , the disorder average over

{
ξ

µ

i

}
has

already been carried out. In the appendix we include the calculation in detail to obtain Zeff .
The training error εt is defined as the average error per example,

εt = 1

P
〈E〉 = −∂Gr

∂β
. (15)

The generalization error εg is defined as the average error for a general example not trained.
εg can be found from

εg =
〈∫

DNξ
1

4

{
o
({

W 0
ki

}; {ξi}
) − σ({Wji}; {ξi})

}2
〉

= 1

π
cos−1

(
A3√
A1

)
, (16)

where
∫

DNξ denotes the N-dimensional Gaussian integration over {ξi}, equivalent to the
average over arbitrary examples. εt and εg are found to decay as α increases, implying that
learning improves as the number of examples increases.

3. Infinite degeneracies

The set of weights, {Wij }, can be mapped to a NM-dimensional vector W . The energy
E(W ) gives the ragged energy surface with many valleys in this weight vector space. The
bottom of a valley, separated by an infinite energy barrier from other valleys, corresponds
to a ground state. There are two sources for degeneracy in ground states: (i) permutation
symmetry and (ii) symmetry in anti-pairing. The former is characteristic of every network
with the fully-connected structure. The latter is due to redundancy of hidden units of the
student, not observed for M = MT.

Permutation symmetry is the invariance of the output under permutation of hidden units.
Given a ground state, successive permutations of hidden units will generate M! equivalent
ground states. In order to examine degeneracy solely due to symmetry in anti-pairing, let
us consider a set of ground-state weight vectors, all having the same weights for the hidden
units in B1 as the original teacher. The number of degeneracies is then equal to 2NL which
is the number of ways of choosing random numbers for the weights for B2. The weights for
B3 are determined automatically from the condition of an anti-pair. Thus the total number of
degeneracies in ground states is M!2NL.

The learnt weight vector W of the student after being trained through sufficient examples
will be one of M!2NL equivalent ground states that may not be W 0 of the effective teacher.
One can choose any of those ground-state weight vectors for the hypothetical effective teacher
with no loss of generality. The current choice seems the most convenient for notation.

The Hamming distance, (W − W ′)2/4, measures how far two weight vectors are
apart in the weight vector space. The Hamming distance between ground states for usual
thermodynamic systems such as the Ising model is extensive with the size of the system.
An interesting feature in this problem is that the Hamming distance between two anti-paired
ground states may not be extensive. In fact the shortest Hamming distance is equal to 2 for
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the case in which two ground states differ only by a single anti-pair. It is hard to imagine
the energy landscape where adjacent valleys a finite distance apart are separated by infinite
energy barrier. This might be explained by the argument that it is probabilistically, though
not energetically, hard to flip one weight of an anti-pair and exactly the other successively
in order to move from one valley to the adjacent one. There are two possible ways to show
this feature. In simulation it should be shown that the relaxation time from one valley to
another increases with the size of the system, NL. A rigorous numerical study for this, that
is extremely time-consuming, is not done in this paper, though we have some supportive data
from the simulation for systems of rather small size. Theoretically we should show that the
saddle-point solution extremizing the free energy manifests the anti-pairing ordering formed
by single anti-paired ground states, not by a mixture of them. We will concentrate ourselves
on the theoretical investigation in later sections.

For an insufficient number of examples, up to O(NMa) for a < 1, the dominant
probability distribution spreads over a wide region which is singly connected and located
approximately equidistantly from valleys in the weight vector space. This means that there is
only one thermodynamic state, called the permutation-symmetric state. As a result permutation
symmetry is preserved and no specific anti-pairing is built up. As the number of examples
goes to O(NM), the region of the dominant probability distribution is disconnected into
many subregions, each of which is confined within a valley and corresponds to a single
thermodynamic state called the permutation symmetry breaking state. There still exists the
subregion with preserved permutation symmetry. The free energy of a subregion can be
defined as minus temperature times the logarithm of the restricted partition function for which
the summation over weights is done within the subregion. Let FPS be the free energy of
the subregion with permutation symmetry. Let FPSB be the free energy of a single valley
with anti-pairing and broken permutation symmetry, having the same value for all valleys.
The permutation symmetry breaking states have the so-called extensive configuration entropy
equal to NL ln 2 + ln M!. Therefore the total free energy of the valleys is equal to FPSB −
β−1NL ln 2 in the limit N � M .

One can expect that the first-order phase transition from the permutation-symmetric to the
permutation symmetry breaking state occurs at a critical number of examples, Pc = MNα′

c.
However, the determination of α′

c might depend on the dynamics. More specifically, it might
depend on the observation time (learning time) for which the time average, supposed to be the
same as the thermal average, is carried out. Depending on the observation time, the student
may visit a different number of thermodynamic states. If the student is allowed to learn for
a sufficiently long time, enough to visit everywhere including all valleys in the weight space,
the configuration entropy should be considered. In this case for the longest observation time,
α′

c is determined from the condition:

FPS = FPSB − β−1NL ln 2. (17)

For minimal observation time which is the relaxation time from the permutation-symmetric
region to one of the valleys, the transition might be signalled by the condition:

FPS = FPSB. (18)

4. Permutation-symmetric phase

We can obtain the set of equations for order parameters from the saddle-point condition for the
free energy. When the number of examples is of order of NMa for a < 1, it can be found that
there exists only a solution with permutation symmetry for the saddle-point equations. Due
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to permutation symmetry, the order parameters do not depend on hidden unit indices, so we
have w = Q2−, q = C, q± = C2±, r = R, r± = R2±. Note that each of the order parameters
in lowercase is diagonal in a block matrix given in equations (4)–(6) while the corresponding
one in uppercase is off-diagonal. The order parameters written in lowercase can be found to
be of the order of M−1, so they are neglected in the large-M limit. The other order parameters
written in uppercase are of the same order, but give non-negligible contribution through the
rescaling given in equation (7). The hatted order parameters conjugate with the negligible
order parameters, such as ŵ, q̂, q̂±, r̂ , and r̂±, can also be shown to vanish. For example, the
saddle-point condition yields

q̂ ∝ ∂Gr

∂q
∝ 1√

1 − q2
− 1, (19)

where we use the fact that Gr depends on sin−1 q − q. One can easily see q̂ → 0 as q → 0.
We consider only the case for p = 0, since p plays an important role only in the

permutation symmetry breaking phase. Using the above results, we can obtain the contribution
of the effective partition function to the free energy in equation (A.14) in the appendix. Then
equation (12) leads to

G0 = M ln 2 − 1
2 Tr Q · Q̂ − 1

2 Tr C · Ĉ − Tr Rt · R̂

− 1
2 (ln det(I − Q̂) + Tr(I − Q̂)−1 · Ĉ + Tr Γ · R̂t · (I − Q̂)−1 · R̂). (20)

Note that the hatted order parameters appear only in G0. Therefore, from the saddle-point
condition, the derivatives of G0 with respect to Q̂, Ĉ and R̂ should vanish. Therefore we
find

C = (I − Q̂)−1, (21)

R = (I − Q̂)−1 · R̂ ·Γ, (22)

Q = (I − Q̂)−1 + (I − Q̂)−1 · (Ĉ + R̂ ·Γ · R̂t ) · (I − Q̂)−1, (23)

where Γ is defined in equation (A.15). Using these equations, we can eliminate the hatted
order parameters from G0.

From the saddle-point condition, each hatted order parameter is given by the derivative
of Gr with respect to its corresponding conjugate order parameter, which can be found from
the expression for G0 given in equation (20). In Gr, R̄1±, R̄∗

1± have the same multiplicative
factor

√
κ(1 − κ)/2 and R̄2+, R̄2− have the same factor 1 − κ . This gives

R̂1+ = R̂1− = R̂∗
1+ = R̂∗

1−, R̂2+ = R̂2−. (24)

Then we can show that equation (22) yields

R̄∗
1+ = R̄∗

1− = R̄2+ = R̄2− = 0. (25)

These order parameters involve the weights for redundant hidden units of the effective teacher
that are missing in the original teacher. As expected, the introduction of the effective teacher
does not have any effect in the permutation-symmetric phase. We will show in the next section
that in the permutation symmetry breaking phase the effective teacher plays a crucial role,
even for p → 0.

We also find that A1, A2 and A3 in Gr are written as linear combinations of the order
parameters. As a result, the elements of each hatted order parameter matrix differ only by
constant factors, so that there is only one independent element for each matrix. Therefore
there are three independent hatted order parameters for three matrices: Q̂, Ĉ and R̂. From
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equations (21)–(23), we can see that this is also true for order parameters. Thus we can
express all order parameters in terms of three independent order parameters, e.g., Q̄, C̄ and R̄.
Through a bit lengthy calculation, we can eliminate the hatted order parameters. Interestingly,
the free energy can be shown to be form-invariant, independent of MT, for three redefined
quantities given by

Qinv = κ(1 + Q̄ − (1 − κ)),

Cinv = κ(1 + Q̄ − C̄ − (1 − κ)),

Rinv = √
κR̄.

(26)

MT appears only implicitly in these quantities, as well as M. The form-invariant free energy
in the permutation-symmetric phase can be found as

− βFPS

N
= M ln 2 − Qinv

2
+

Qinv − R2
inv

2Cinv
+

1

2
ln Cinv

+ 2α

∫
Dt H(k1t) ln(e−β + (1 − e−β)H(k2t)), (27)

where

k1 =
2
π
Rinv√

2
π
(Qinv − Cinv) − (

2
π
Rinv

)2
, k2 =

√√√√ 2
π
(Qinv − Cinv)

1 − 2
π

+ 2
π
Cinv

. (28)

Imposing the saddle-point condition on FPS with respect to Qinv, Cinv and Rinv yields
three self-consistent equations that can be solved numerically. All the properties obtained
from the solution of the self-consistent equations are independent of MT as well as M, and
therefore are the same as for M = MT. εg and εt are given by

εg = 1

π
cos−1


 2

π
Rinv√

1 − 2
π

+ 2
π
Qinv


 , εt = 2

π

∫
Dt

H(k1t)(1 − H(k2t))

H(k2t) + (eβ − 1)−1
. (29)

The learning curve given by εg and εt versus α in the permutation-symmetric phase is
independent of MT.

As α increases, εg and εt decrease to reach plateaus. Taking the limit α → ∞, we can
show

Cinv,Qinv − R2
inv ∼ O(α−1) → 0. (30)

Rinv is found self-consistently from

Rinv =
√

1 − 2

π

A

B
, (31)

where

A =
∫

Dx
e−R2

invx
2/π

H
(

2
π
Rinvx

)
+ (eβ − 1)−1

,

B =
∫

Dx H(k1x)

(
e−k2

2x2

(H(k2x) + (eβ − 1)−1)2
−

√
2πk2x

H(k2x) + (eβ − 1)−1

)
.

(32)
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Figure 1. εg (+) and εt (×) versus α = P/N at T = 2.5 are plotted from the Monte Carlo
simulation for N = 51,M = 41,MT = 21. The solid line and the broken line denote the theoretical
plots for εg and εt respectively, obtained by solving self-consistent equations numerically, showing
a good agreement with those from the simulation.

Using equation (30), we find that k1 and k2 simply become
√

2
π−2 and

√
2

π−2Rinv respectively.
Then we can obtain the limiting values of εg and εt at plateaus from equation (29). We can
also obtain the free energy for large α,

− βFPS

N
= M ln 2 + 2α

∫ ∞

−∞
Dt H

(√
2

π − 2
t

)
ln

(
e−β + (1 − e−β)H

(√
2

π − 2
Rinvt

))
.

(33)

This result can also hold for α ∼ O(M) where the term of O(ln M) is neglected.
Figure 1 shows the result from the Monte Carlo simulation at T = 2.5. From the

theoretical calculation, εt → 0.20 and εg → 0.21 as α → ∞, which agrees well with the
values from the simulation. As the temperature T goes down, εt decreases to 0 while εg

increases. This implies that at low T, where the tendency to minimize the energy is strong,
weight vectors producing small training error for given examples are not quite suitable for a
general, not-trained example. This is a kind of over-fitting caused by a strict minimization of
the energy. The stochastic or noisy learning turns out to be helpful in overcoming this kind of
over-fitting.

5. Permutation symmetry breaking phase

The permutation symmetry breaking state is expected to appear for sufficiently many examples.
FPS will increase to be comparable to FPSB, that will be found in this section, as α grows.
As seen in equation (33), Rinv is fixed in the limit α → ∞ for given β, so only change will
be made by α. Therefore we expect O(α) � M; otherwise α would yield an inconsiderable
change in FPS � −NMβ−1 ln 2. In fact the transition from the permutation-symmetric to the
permutation symmetry breaking state will be found to occur for α ∼ O(M).
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Let us define α′ by α/M . We expect that there exists a new solution for the saddle-point
equations for order parameters such that

q → 1, q+ → 1, r → 1, r+ → 1. (34)

The limit q → 1, r → 1 means that the weights of the student and the effective teacher for
hidden units in B1 become identical. Similarly, the limit q+ → 1, r+ → 1 means that the
weights of the two networks for hidden units in B2, B3 get close. As p → 0, the student will
have anti-pairing as perfectly as the effective teacher. So we also expect the new permutation
symmetry breaking solution to give

q− → −1, r− → −1, w → −1 as p → 0. (35)

At an early step, we tried to find the permutation symmetry breaking solution without
introducing the effective teacher. In this approach, the matrix Rjk in equation (6) is M × MT.
This gives the correct permutation-symmetric solution. Note that the matrix elements
associated with redundant hidden units of the effective teacher vanish, as can be seen in
equation (25). There are also missing order parameters, r+ and r−. These order parameters
measure the overlap of weights between the student and the effective teacher for redundant
hidden units. Technically, this approach corresponds to the case where r±, r̂± = 0 in the
formalism based on the effective teacher. However, we cannot find a desired solution with
q, q+ → 1 and q−, w → −1 in this approach. It is very crucial to introduce the effective
teacher as a ground state and the overlaps with it as the order parameters. A similar scheme
can be seen in the anti-ferromagnetic system where the stagger magnetization is introduced as
a crucial order parameter.

There are two kinds of divergence for the hatted order parameters. One is due to
permutation symmetry breaking yielding equation (34). It makes q̂, q̂+, r̂ and r̂+ divergent.
For example,

q̂ ∝ α′ ∂Gr

∂q
∝

(
1√

1 − q2
− 1

)
× (· · ·) ∼ 1√

1 − q
× (· · ·), (36)

where ‘· · ·’ comes from the differentiation of Gr . In the same way, q̂+ ∼ (1 − q+)
−1/2, r̂ ∼

(1 − r)−1/2, r̂+ ∼ (1 − r+)
−1/2. From the Monte Carlo simulation for finite M and large N,

we can still observe that the weight vector of the student collapses to a single ground-state
weight vector. Presumably this divergence is due to the thermodynamic limit N → ∞. We
can then use

q̂, q̂+, r̂, r̂+ → ∞. (37)

The exact scaling behaviour on this divergence is beyond the saddle-point approximation.
We can also use a strong condition,

r̂√
q̂

→ ∞,
r̂+√
q̂+

→ ∞. (38)

This guarantees self-consistently that r → 1, r+ → 1 as well as q → 1, q+ → 1.
There is a similar divergence due to equation (35) in the limit p → 0. As a result,
q̂− ∼ (1 + q−)−1/2, r̂− ∼ (1 + r−)−1/2 and ŵ ∼ (1 + w)−1/2. We consider that p−1 is
large, but N � p−1. Therefore, we use

q̂, q̂+, r̂, r̂+ � q̂−, r̂−, ŵ. (39)

In the appendix, using this together with equation (38), we can simplify many involved terms.
The other divergence is due to the large-M limit. For example,

Q̂ ∝ α
∂Gr

∂Q̄
� Mα′ × (· · ·), (40)



5640 C Kwon and H K Kim

where α ∼ O(M) is used and ‘· · ·’ comes from the differentiation of Gr . This divergence
is applied to the matrix elements of Q̂, Ĉ and R̂. We are considering N � M , so the
divergence in equations (37) and (38) is stronger than that due to the large-M limit. This fact
is also used in the appendix.

Taking divergence into account, we can simplify G0 in equation (12) (see the appendix):

G0 = −1

2
Tr(Q − H) · Q̂ − 1

2
Tr(C − A) · Ĉ − Tr(Rt − H) · R̂

− L

2
(w + 1 − 2p)ŵ +

MT

2
(q − 1)r̂ − MT(r − 1)r̂ +

L

2
((q+ − 1)q̂+

+ (q− + 1 − 2p)q̂−) − L((r+ − 1)r̂+ + (r− + 1 − 2p)r̂−). (41)

The matrix H is defined in equation (A.22) in the appendix. Since the hatted order parameters
appear only in G0, the derivatives of G0 with respect to them should vanish. Therefore,
we find

q = q+ = r = r+ = 1, w = q− = r− = −1 + 2p. (42)

This implies that in the permutation symmetry breaking state, the weight vector of the student
is frozen to one of the ground-state weight vectors. We can also find

Q = R = H, C = A = 0. (43)

The structure of H manifests anti-pairing for p → 0. Therefore, we get G0 = 0.
The three terms in equation (10) for Gr can be found as

A1 = A2 = A2
3 = κ +

4

π
(1 − κ)

√
p. (44)

This leads to Gr = 0. Therefore the free energy of a single valley for the permutation
symmetry breaking solution vanishes,

FPSB = 0. (45)

This means that the entropy and the energy are equal to zero. The zero entropy confirms that
the weight vector of the student is frozen to a single ground state, not a mixture. The zero
energy means that the student becomes equivalent to the effective teacher. The training error
εt and generalization error εg can certainly be shown to vanish.

The two extreme conditions in equations (17) and (18) might yield the lower and the
upper bound respectively for the critical value α′

c. We can find

α′
c = −γ ln 2

2

[∫ ∞

−∞
Dt H

(√
2

π − 2
t

)
ln

(
e−β + (1 − e−β)H

(√
2

π − 2
Rinvt

))]−1

, (46)

where Rinv is the value for α → ∞ in equation (31). The parameter γ is defined by

γ =
{

1 (upper bound)

1
2 (1 + MT/M) (lower bound).

(47)

Note that the upper bound is independent of MT, the same as the critical value for M = MT.
In the computer simulation, the target network is chosen to have MT hidden units, so is

not the effective teacher in the theoretical scheme. Figure 2 shows the result from the Monte
Carlo simulation at T = 2.5. The simulation was run so optimally as to barely detect the
transition, which might correspond to the regime of the shortest observation time. In fact α′

c
measured from the simulation is close to the theoretical estimate which is equal to the critical
value for M = MT.
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Figure 2. εg (+) and εt (×) versus α′ = P/NM at T = 2.5 are plotted from the Monte Carlo
simulation for N = 25, M = 17,MT = 11. We use smaller values of N, M, MT than those
in figure 1 in order to observe the phase transition. The upper bound of α′

c is expected to be
independent of MT. It is in fact close to the theoretical estimate, which is about 8.3.
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Figure 3. The distribution of the overlaps Qjk outside the diagonal block for j, k ∈ B1 for
permutation symmetry breaking state is plotted. The ordinate denotes the number of occurrences
of matrix elements on the abscissa. Data are obtained from the Monte Carlo simulation at T = 2.5
and for N = 25,M = 17,MT = 11. The distribution is symmetric about zero, which manifests
anti-pairing ordering.

Figure 3 shows the distribution of overlaps N−1 ∑N
i=1 WjiWki for j, k = 1, . . . ,M for

α′ > α′
c from which the distribution of overlaps for the teacher itself N−1 ∑N

i=1 W 0
jiW

0
ki

for j, k = 1, . . . ,MT is extracted. It gives the distribution of Qjk outside the diagonal
block (j, k ∈ B1) in the theoretical scheme, given in equation (4). Because of anti-pairing,
this distribution is expected to be symmetric about zero. In fact, the figure shows perfect
symmetry, which directly verifies our scenario based on anti-pairing. Calculation is done
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under the condition: N � M � 1 and finite MT/M . We still observe a good agreement
between the results from the theory and the simulation even under a looser condition.

6. Discussions and future

We practised the simulation for networks with smaller size than that used for figure 2. We
observed that relaxation took place from valley to valley in a very complicated manner, where
valleys are identified as having zero energy. We measured the anti-pairing ordering and the
Hamming distance of each valley from an initial valley. We found that each valley has perfect
anti-pairing and that the Hamming distance remains constant inside a valley but varies from
valley to valley. The latter implies that each valley corresponds to a single weight vector, not
a mixture. We also observed that the relaxation time to escape from a valley tends to increase
with the network size. This observation may support the idea that each thermodynamic state,
represented by a valley, is given by single anti-paired weight vector. For more rigorous
analysis, we should examine the scaling behaviour of the relaxation time in system size NM ,
which is not done in this paper.

Interpretation of the two limits for the critical value α′
c in equation (46) is not yet clearly

made. Presumably the lower bound corresponds to the case for the longest observation time
and the upper bound to that for the shortest observation time, both of which are infinite in
the thermodynamic limit. Recent work on structural glasses has given us rich and novel
concepts about glassy states with extensive configuration entropy [25–28]. We do not attempt
to investigate the dynamical aspect for our problem in this direction, which is beyond our
present scope.

Our study presents a particular way for a generic situation in which a more complicated
student adjusts its redundant structure, though not recognizing it in the process of learning,
to learn a simpler teacher. It is anti-pairing of redundant weights in our case. The redundant
structure may provide the student with more diversity in solving the examples than the teacher.
This is manifested in our study by the appearance of infinitely many ground states due to
anti-pairing. The student may learn a simpler teacher from a smaller number of examples,
which can be seen from our finding that there exists a lower bound of α′

c.
Learning in application areas is usually imperfect because of the limitation in constructing

a network. One does not know the proper size of the hidden layer, which cannot be enlarged
indefinitely. One happens to encounter the situation in which the student has insufficient
hidden units. This situation can be studied in our model for M < MT to which we are now
extending our investigation. The learning mechanism is quite different from that for M > MT.
In this case, there are no ideal attractors yielding the desired output in the weight vector space
of the student. When MT −M is small, a possible candidate for an attractor might be a weight
vector composed of the weights which are the same as those on partial M hidden units of the
teacher. This weight vector will give a better generalization error because it is very similar
to the weight vector of the teacher. However, it always yields a nonzero training error for
given examples. Such partial learning may not be probable at low temperatures where the
tendency to minimize the energy is dominant. Therefore, partial learning, if possible, will be
found at finite temperatures. Noise is expected to play a more drastic role, through a phase
transition, in escaping from over-fitting at low temperatures than in this study. However, it is
not clear whether such partial learning might be possible even for large MT − M , resulting
in a relatively large generalization error. Limit MT � M will lead to εg = 1/2, definitely
larger than the value given from the permutation-symmetric state, which is not desirable.
Presumably there will be a lower bound of M below which there is no partial learning. There
is also the possibility of replica symmetry breaking, which was found to be diagnostic of
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imperfect learning in some cases [3, 4, 9, 10]. We are now investigating this problem carefully
by using the one-step replica symmetry breaking scheme.
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Appendix. Effective partition function

The effective partition function in equation (12) is written as

Zeff =
∑
{Wσ

j }

∫ n∏
σ=1

3∏
a=1

d�σ
a d�̂σ

a

2π

∫ 3∏
a=1

DĈpa

× exp

(
i
∑

σ

Λσ · Λ̂σ
+
∑

σ

p ·Λσ +
1

2

∑
σ

Λσ · Q̂ ·Λσ +
∑

σ

Λσ · R̂ ·Λ0

)

× exp


−i

∑
σ


 �̂σ

1√
MT

∑
j∈B1

Wσ
j +

�̂σ
2√
L

∑
j∈B2

Wσ
j +

�̂σ
3√
L

∑
j∈B3

Wσ
j




+
1

2
q̂
∑
j∈B1

(∑
σ

Wσ
j

)2

+ r̂
∑
j∈B1

∑
σ

Wσ
j W 0

j +
1

2
ŵ

∑
j∈B2

∑
σ

Wσ
j Wσ

j+L

+
1

8
(q̂+ + q̂−)

∑
j∈B2

(∑
σ

(
Wσ

j + Wσ
j+L

))2

+
1

8
(q̂+ − q̂−)

×
∑
j∈B2

(∑
σ

(
Wσ

j − Wσ
j+L

))2

+
1

4
(r̂+ + r̂−)

∑
j∈B2

∑
σ

(
Wσ

j + Wσ
j+L

)(
W 0

j + W 0
j+L

)

+
1

4
(r̂+ − r̂−)

∑
j∈B2

∑
σ

(
Wσ

j − Wσ
j+L

)(
W 0

j − W 0
j+L

) . (A.1)

In this equation p is a three-dimensional vector with components pa for a = 1, 2, 3 and∫ ∏
a DĈpa denotes the multi-variable Gaussian integration with the variance papb = Ĉab.

Λσ and Λ̂
σ

are three-dimensional vectors with the components �σ
a and �̂σ

a , respectively. Also
a vector Λ0 is defined by

Λ0 = (
�0

1,�
0
2,�

0
3

) =

∑

j∈B1

W 0
j√

MT
,
∑
j∈B2

W 0
j√
L

,
∑
j∈B3

W 0
j√
L


 . (A.2)

�0
a are random variables due to the random distribution of weights of the effective teacher. In

the large-M limit we only need moments up to the second order,

�0
a = 0,

(
�0

a

)2 = 1, �0
2�

0
3 = r0, �0

1�
0
2 = �0

1�
0
3 = 0. (A.3)

Higher order moments, at most O(M−1), are neglected. The matrices Ĉ, Q̂ and R̂ are defined
in equation (13).
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The effective partition function contains the quadratic terms in which weights are coupled
between replicas. They can be decoupled by the Gaussian transformation exp(h2/2) =∫

Dx exp(hx). Introducing Gaussian integral variables, zj , z+j , z−j , these quadratic terms
become linear as follows:∑
σ,j∈B1

√
q̂zjW

σ
j +

∑
σ,j∈B2

(√
q̂+ + q̂−z+j

Wσ
j + Wσ

j+L

2
+
√

q̂+ − q̂−z−j

Wσ
j − Wσ

j+L

2

)
. (A.4)

Now we can easily carry out the sum over
{
Wσ

j

}
. In this summation we use the cumulant

expansion up to the second order in �̂σ
a which is multiplied by M

−1/2
T or L−1/2, giving a

non-vanishing contribution to the integration over �̂σ
a . We also rename weights by

Wσ
j W 0

j → Wσ
j . As a result, we can find the effective partition function as being independent

of site index j . In this procedure we introduce the effective fields given as

h(z) =
√

q̂z + r̂ , h±k(z±) =
√

q̂+ ± q̂−z± + 1
2 (r̂+ ± r̂−)

(
1 ± W 0

+kW
0
−k

)
, (A.5)

where z, z+, z− are the same Gaussian variables as in equation (A.4) with site index j dropped.
W 0

+k and W 0
−k denote the partially anti-paired weights of the effective teacher, W 0

k and W 0
k+L

respectively for k ∈ B2. Then we can impose the probability of anti-pairing for the overlap
r0 = W 0

+kW
0
−k defined in equation (A.3), given as

P(r0) = (1 − p)δ(r0 + 1) + pδ(r0 − 1). (A.6)

Let us define for k ∈ B2

ck = eŵ/2 cosh h+k + e−ŵ/2 cosh h−k,

s±k = eŵ/2 sinh h+k ± e−ŵ/2 sinh h−k.
(A.7)

Then we abbreviate many involved terms:

a = tanh2 h, a± = 1

L

∑
k

(
s±k

ck

)2

, a′ = 1

L

∑
k

(
2 sinh ŵ

c2
k

)
,

b = tanh h, b± = 1√
L

∑
k

(
W 0

+ks±k

ck

)
,

b1 = eŵ/2

√
L

∑
k

W 0
+k sinh h+k

ck

, b2 = e−ŵ/2

√
L

∑
k

W 0
+k sinh h−k

ck

,

d = a − (
�0

1

)2
b2, d+ = b2

1 − b1
2
, d− = b2

2 − b2
2
.

(A.8)

In this expression, the over-bar denotes the average over z, z+, z−. The quadratic terms in �̂σ
a ,

yielded by the cumulant expansion, can also be decoupled by the Gaussian transformation:

−1

2
d

(∑
σ

�̂σ
1

)2

− 1

2
d+

(∑
σ

(
�̂σ

2 + �̂σ
3

))2

− 1

2
d−

(∑
σ

(
�̂σ

2 − �̂σ
3

))2

→ −itd
∑

σ

�̂σ
1 − it+d+

∑
σ

(
�̂σ

2 + �̂σ
3

) − it−d−
∑

σ

(
�̂σ

2 − �̂σ
3

)
, (A.9)

where t, t+, t− are a new set of Gaussian integral variables with variance 1.
We define a vector t by

t =




�0
1b +

√
dt

b+ +
√

d+t+ +
√

d−t−
b− +

√
d+t+ − √

d−t−


 . (A.10)
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We also define a matrix A by

A =

1 − a 0 0

0 1 − a+ a′

0 a′ 1 − a−


 . (A.11)

Using A and t, we can write the contribution of the effective partition function to the free
energy in a compact manner:
1

n
ln Zeff = MT ln 2 cosh h(z) + L ln 2(eŵ/2 cosh h+(z+) + e−ŵ/2 cosh h−(z−))

− 1

2
ln det(I − A · Q̂) +

1

2
Tr(A−1 − Q̂)−1 · Ĉ − 1

2
t ·A−1 · t

+
1

2
t · A−1 · (I − A · Q̂)−1 · t +

1

2
Λ0 · R̂t · (A−1 − Q̂)−1 · R̂ ·Λ0

+ t · (I − A · Q̂)−1 · R̂ ·Λ0, (A.12)

where the over-bar denotes the average over all possible random variables z, z±, r0, t, t±,�0
a ,

and I is the 3 × 3 identity matrix. This seems to be very complicated, but can be simplified by
the useful limits found for the permutation-symmetric and the permutation symmetry breaking
states.

In the permutation-symmetric state, q, q±, r, r±, w and the corresponding hatted order
parameters, q̂, q̂±, r̂, r̂±, ŵ vanish. Therefore

A → I, t → 0. (A.13)

Using this, we obtain
1

n
ln Zeff = M ln 2 − 1

2
[ln det(I − Q̂) + Tr(I − Q̂)−1 · Ĉ + Tr Γ · R̂t · (I − Q̂)−1 · R̂],

(A.14)

where

Γ =

1 0 0

0 1 −1
0 −1 1


 . (A.15)

Therefore we find equation (20).
In the permutation symmetry breaking state, the strong condition in equation (38) together

with equation (39), gives

a = a± → 1, a′ → 0, i.e., A → 0. (A.16)

Also, the limit N � M gives

A · Q̂ → 0. (A.17)

Then we can find

(I − A · Q̂)−1 = I + A · Q̂ + · · · ,
ln det(I − A · Q̂) = −Tr A · Q̂ + · · · . (A.18)

Then the contribution of the effective partition function to the free energy in the permutation
symmetry breaking state is found as
1

n
ln Zeff = MT ln 2 cosh h(z) + L ln 2(eŵ/2 cosh h+(z+) + e−ŵ/2 cosh h−(z−))

+
1

2
Tr A · Ĉ +

1

2
t · Q̂ · t + t · R̂ ·Λ0, (A.19)
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where the higher order terms in A · Q̂ are neglected. The first two terms can be found as

ln 2 cosh h(z) → r̂ ,

ln 2(eŵ/2 cosh h+(z+) + e−ŵ/2 cosh h−(z−)) → r̂+ − (1 − 2p)
(
r̂− + 1

2 ŵ
)
. (A.20)

The two terms containing t can be simplified as

t · Q̂ · t → Tr H · Q̂, t · R̂ ·Λ0 → Tr H · R̂ (A.21)

where the matrix H is given by

H = (1 − p)


1 0 0

0 1 −1
0 −1 1


 + p


1 0 0

0 1 1
0 1 1


 . (A.22)

Therefore, we obtain G0 in equation (41).
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